Problema 1: Un esquiador se desliza a través de la pista de esquí que se muestra en la figura siguiente, la cual posee una pendiente de 35°. El joven e intrépido esquiador pretende salvar la brecha con un gran salto. a) ¿Cuál debe ser la velocidad mínima que debe poseer en el punto a para lograr alcanzar el punto b?

b) ¿Con que velocidad llegará al punto b?

c) ¿Con que velocidad llegará al punto c? Suponer que la pista es totalmente lisa.

Problema 2: Supongamos que dos masas (m es de 4 kg y M de 8 kg) se mueven bajo la acción de una fuerza externa F aplicada tal como se muestra en la figura. El coeficiente de roce cinético entre todas las superficies (entre ambas masas y entre la masa M y el suelo) es 0,25 y el coeficiente de roce estático es 0,4.

a) Realizar el diagrama de cuerpo libre para cada una de las masas indicando claramente los pares de acción y reacción.

b) ¿Cuál es la intensidad de la fuerza aplicada si ambas masas se mueven juntas con una aceleración de 3 m/seg2?

c) ¿Cuál es la máxima fuerza F que se le puede aplicar a la masa M para que ambas masas se desplacen juntas sin que haya movimiento relativo entre ellas? ¿Cuál es la aceleración de los bloques en esta situación?
PROBLEMA 1

\[\begin{align*} \mathbf{A} & : \begin{cases} v_x = v_0 \cos 35 = v_0 \cdot 0,82 \\ v_y = -v_0 \sin 35 = -v_0 \cdot 0,57 \\ 38 \text{ m} = 0 + v_0 \cos 35 \cdot t \quad (1) \\ 62 \text{ m} = 98 \text{ m} - v_0 \sin 35 \cdot t - \frac{1}{2} g t^2 \quad (2) \end{cases} \\
\text{De (1)} & : t = \frac{38 \text{ m}}{v_0 \cos 35} \\
\text{En (2)} & : -36 \text{ m} = -v_0 \sin 35 \left(\frac{38 \text{ m}}{v_0 \cos 35} \right) - \frac{g}{2} \left(\frac{38 \text{ m}}{v_0 \cos 35} \right)^2 \\
& \Rightarrow 36 \text{ m} - 26,6 \text{ m} = 4,9 \left(\frac{38 \text{ m}}{v_0} \right)^2 \cdot \frac{1}{2} \Rightarrow v_0 = 33,45 \text{ m/s} \\
& \overrightarrow{v}_0 = (33,45 \text{ m/s}, 0,82) \mathbf{\hat{c}} - (33,45 \text{ m/s} \cdot 0,57) \mathbf{\hat{f}} \mathbf{\hat{y}} = 27,43 \text{ m/s} \mathbf{\hat{c}} - 19 \text{ m/s} \mathbf{\hat{f}} \mathbf{\hat{y}} \\
\mathbf{B} & : t = \frac{38 \text{ m}}{33,45 \text{ m/s}, 0,82} = 1,18 \text{ s} \\
& \overrightarrow{v}_y (1,18 \text{ s}) = -33,45 \text{ m/s} \cdot 0,57 - 9,8 \text{ m/s}^2 \cdot 1,18 \approx -32,6 \text{ m/s} \mathbf{\hat{f}} \mathbf{\hat{y}} \\
& \overrightarrow{v}_{10} = 27,43 \text{ m/s} \mathbf{\hat{c}} - 32,6 \text{ m/s} \mathbf{\hat{f}} \mathbf{\hat{y}} \\
& \left| \overrightarrow{v}_{10} \right| = 42,6 \text{ m/s} \\
\mathbf{C} & : \sin 35^\circ = \frac{38 \text{ m}}{L} \\
& L = 66,25 \text{ m} \\
& \begin{cases} Q_x = g \sin 35 = 5,62 \text{ m/s}^2 \\
Q_y = g \cos 35 = \end{cases} \]
En el punto b la velocidad tiene una dirección dada por:

\[\tan \phi = \frac{27.43}{32.6} = 0.84 \rightarrow \phi \approx 40^\circ \]

\[V_x = \sqrt{V_0} \cos 45^\circ = 42.6 \text{ m/s} \cos 45^\circ \]

\[V_y = 41.75 \text{ m/s} \]

\[x(t) = x_0 + V_x t + \frac{1}{2} a_x t^2 \]

\[66.25 \text{ m} = 0 + 41.75 \frac{\text{m}}{\text{s}} t + \frac{1}{2} \cdot 5.62 \frac{\text{m}}{\text{s}^2} t^2 \]

\[L_v = 1.45 \frac{\text{m}}{\text{s}} \quad (\sigma \ t = -16.30 \text{ s}) \]

\[V_{x}(t) = V_{0x} + a_x t \]

\[\sqrt{V_o} (1.45 \frac{\text{m}}{\text{s}}) = 41.75 \frac{\text{m}}{\text{s}} + 5.62 \frac{\text{m}}{\text{s}^2} \cdot 1.45 \frac{\text{m}}{\text{s}} = 49.4 \frac{\text{m}}{\text{s}} \]
De (4) \[N_s = H'_1 + Mg \]
\[N_s = mg + Mg \]
\[N_s = (m + M)g \]

De (3) \[F = F'_1 + F_s + Ma = ma + \mu_s (m + M)g + Ma \]
\[F = 3.12 + 0.25 \times 12.9.8 \approx 65.4N \]

Para que la aceleración sea máxima
\[F_r = \mu_e H_1 = \mu_e mg \]
Además
\[F_r = m a_{max} \]
Combina: \[\mu_e mg = m a_{max} \]
\[a_{max} = \mu_e g \]
\[a_{max} = 0.4 \times 9.8 \]
\[a_{max} = 3.92 \text{ m/s}^2 \]

De (5)
\[F = m a_{max} + \mu_s (m + M)g + N_{max} \]
\[F = a_{max} (m + M) + \mu_s g (m + M) \]
\[F = 3.92 \times 12 + 0.25 \times 9.8 \times 12 \]
\[F = 76.4N \]