Astronomía Esférica
Primer Parcial - Tercera Fecha 2013

1) Rotaciones
Consideremos un astro de coordenadas horizontales acimut $\lambda$ y altura $\beta$ visto desde un observatorio de latitud $\phi$ ubicado en un instante de Tiempo Sidéreo Local TSL. Describa de manera detallada las rotaciones necesarias para obtener las coordenadas celestes $\lambda$ y $\beta$ de dicho astro.

MUY IMPORTANTE: Grafique claramente todos los sistemas de referencia involucrados, especificando ángulo y sentido de cada rotación realizada.

2) Paralaje
Calcular la distancia topocéntrica $r_{top}$, las coordenadas equatoriales celestes topocéntricas $\alpha_{top}$ y $\delta_{top}$, y la paralaje diurna $\mu_d$ de la Luna desde un lugar de latitud $\phi = 34^\circ 54' 30''$ S a las $3^h 2^m 45''$ de Tiempo Sidéreo Local sabiendo que la distancia y las coordenadas equatoriales celestes geocéntricas de dicho astro son $r_{geo} = 395680.4851$ km, $\alpha_{geo} = 11^h 33' 44.22''$ y $\delta_{geo} = 6^\circ 10' 22.8''$. Considere los parámetros de elipsoide WGS84 $a = 6378.137$ km y $f = 1/298.257223563$.

MUY IMPORTANTE: Grafique claramente los sistemas de referencia celestes y terrestres involucrados en el ejercicio.

3) Ahebración
Las expresiones generales que nos dan las variaciones de las coordenadas eclípticas $\lambda$ y $\beta$ por efecto de la aberración vienen dadas por:

$$\Delta \lambda = \left( \frac{V_e}{c} \sin \lambda + \frac{V_e}{c} \cos \lambda \right) \sec \beta,$$

$$\Delta \beta = \left( \frac{V_e}{c} \sin \beta \cos \lambda - \frac{V_e}{c} \sin \beta \sin \lambda + \frac{V_e}{c} \cos \beta \right).$$

a) Asumiendo a la Tierra en una órbita circular y sin perturbaciones, calcule las variaciones en coordenadas eclípticas $\Delta \lambda$ y $\Delta \beta$ en términos de la longitud del Sol $\lambda_0$.
b) Construya la elipse de aberración anual, especificando el semieje mayor, el semieje menor y la excentricidad de la misma.
c) Determine para que valores de $\lambda_0$ una estrella se encuentra desplazada $12''$ de su posición geométrica $\beta_{geo} = 7^\circ 12' 18.23''$ y $\lambda_{geo} = 11^\circ 41' 20.33''$. Considere que el valor de la constante de aberración anual es $k = 20.49552''$.

4) Precisión y Nutación
a) Represente sobre la esfera celeste los elementos de la Precesión que vinculan el sistema ecuatorial celeste medio de la época $t_0$ con el sistema ecuatorial celeste